multimodal_independence¶
- hyppo.tools.multimodal_independence(n, p, prob=0.5, sep1=3, sep2=2)¶
Multimodal Independence data.
Multimodal Independence \((X, Y) \in \mathbb{R}^p \times \mathbb{R}^p\): \(U \sim \mathcal{N}(0, I_p)\), \(V \sim \mathcal{N}(0, I_p)\), \(U^\prime \sim \mathcal{B}(0.5)^p\), \(V^\prime \sim \mathcal{B}(0.5)^p\),
\[\begin{split}X &= \frac{U}{3} + 2 U^\prime - 1 \\ Y &= \frac{V}{3} + 2 V^\prime - 1\end{split}\]- Parameters
n (
int
) -- The number of samples desired by the simulation (>= 5).p (
int
) -- The number of dimensions desired by the simulation (>= 1).prob (
float
, default:0.5
) -- The probability of the bernoulli distribution simulated from.sep1, sep2 (
float
, default:3
,2
) -- The separation between clusters of normally distributed data.
- Returns
x,y (
ndarray
offloat
) -- Simulated data matrices.x` and ``y
have shapes(n, p)
and(n, p)
where n is the number of samples and p is the number of dimensions.