DVariateTest¶
- class hyppo.d_variate.base.DVariateTest(compute_kernel=None, **kwargs)¶
A base class for a \(d\)-variate independence test.
- Parameters
compute_kernel (
str
,callable
, orNone
, default:"gaussian"
) -- A function that computes the kernel similarity among the samples within each data matrix. Valid strings forcompute_kernel
are, as defined insklearn.metrics.pairwise.pairwise_kernels
,[
"additive_chi2"
,"chi2"
,"linear"
,"poly"
,"polynomial"
,"rbf"
,"laplacian"
,"sigmoid"
,"cosine"
]Note
"rbf"
and"gaussian"
are the same metric. Set toNone
or"precomputed"
ifargs
are already similarity matrices. To call a custom function, either create the similarity matrix before-hand or create a function of the formmetric(x, **kwargs)
wherex
is the data matrix for which pairwise kernel similarity matrices are calculated and kwargs are extra arguments to send to your custom function.**kwargs -- Arbitrary keyword arguments for
multi_compute_kern
.
Methods Summary
|
Calculates the \(d\)-variate independence test statistic. |
|
Calculates the d_variate independence test statistic and p-value. |
- abstract DVariateTest.statistic(*args)¶
Calculates the \(d\)-variate independence test statistic.
- abstract DVariateTest.test(*args, reps=1000, workers=1)¶
Calculates the d_variate independence test statistic and p-value.
- Parameters
*args (
ndarray
offloat
) -- Variable length input data matrices. All inputs must have the same number of samples. That is, the shapes must be(n, p)
,(n, q)
, etc., where n is the number of samples and p and q are the number of dimensions.reps (
int
, default:1000
) -- The number of replications used to estimate the null distribution when using the permutation test used to calculate the p-value.workers (
int
, default:1
) -- The number of cores to parallelize the p-value computation over. Supply-1
to use all cores available to the Process.
- Returns