correlated_normal_nonliear¶
- 
hyppo.tools.correlated_normal_nonliear(n, p=1, random_state=None)¶
- Conditionally dependent normal distributions with nonlinear dependence. Example 7 from 1 - \((X, Y, Z) \in \mathbb{R} \times \mathbb{R} \times \mathbb{R}\): .. math: - X_1, Y_1, Z, \epsilon &\sim N(0, 1) \\ Z_1 &= 0.5(Z^3/7 + Z/2) \\ Z_2 &= (Z^3/2 + Z)/3 \\ X_2 &= Z_1 + \tanh(X_1) \\ X_3 &= X_2 + X_2^3 / 3 \\ Y_2 &= Z_2 + Y_1\\ Y_3 &= Y_2 + \tanh(Y_2 / 3) \\ X &= X_3 + \cosh\epsilon \\ Y &= Y_3 + \cosh\epsilon^2 - Parameters
- n ( - int) -- The number of samples desired by the simulation (>= 5).
- Returns
- x,y,z ( - ndarrayof- float) -- Simulated data matrices.- x,- y, and- z.
 - References - 1
- Xueqin Wang, Wenliang Pan, Wenhao Hu, Yuan Tian, and Heping Zhang. Conditional distance correlation. Journal of the American Statistical Association, 110(512):1726–1734, 2015.