cross_corr_ar¶
- hyppo.tools.cross_corr_ar(n, lag=1, phi=0.5, sigma=1)¶
2 linearly dependent time series simulation.
\(X_t\) and \(Y_t\) are together a bivariate univarite AR(
1ag
) with \(\phi = \begin{bmatrix} 0 & 0.5 \\ 0.5 & 0 \end{bmatrix}\) for both series. Noise follows \(\mathcal{N}(0, \sigma)\). With lag (1), this is\[\begin{split}\begin{bmatrix} X_t \\ Y_t \end{bmatrix} = \begin{bmatrix} 0 & \phi \\ \phi & 0 \end{bmatrix} \begin{bmatrix} X_{t - 1} \\ Y_{t - 1} \end{bmatrix} + \begin{bmatrix} \epsilon_t \\ \eta_t \end{bmatrix}\end{split}\]