cond_indep_normal_nonlinear¶
- hyppo.tools.cond_indep_normal_nonlinear(n, p=1, random_state=None)¶
Conditionally independent normal distributions. Example 3 from 1.
\((X, Y, Z) \in \mathbb{R} \times \mathbb{R} \times \mathbb{R}\): .. math:
X_1, Y_1, Z &\sim N(0, 1) \\ Z_1 &= 0.5 \left( \frac{Z^3}{7} + \frac{Z}{2} \right) \\ Z_2 &= \frac{Z^3}{2} + \frac{Z}{3} \\ X_2 &= Z_1 + \tanh(X_1) \\ X &= X_2 + \frac{X_2^3}{3}\\ Y_2 &= Z_2 + Y_1 \\ Y &= Y_2 + \frac{Y_2^3}{3}
- Parameters
n (
int
) -- The number of samples desired by the simulation (>= 5).- Returns
x,y,z (
ndarray
offloat
) -- Simulated data matrices.x
,y
, andz
.
References
- 1
Xueqin Wang, Wenliang Pan, Wenhao Hu, Yuan Tian, and Heping Zhang. Conditional distance correlation. Journal of the American Statistical Association, 110(512):1726–1734, 2015.